21 research outputs found

    Ultra-Small Nanoparticles of Pd-Pt-Ni Alloy Octahedra with High Lattice Strain for Efficient Oxygen Reduction Reaction

    No full text
    The design and synthesis of ultra-small-sized Pt-based catalyst with specific effects for enhancing the oxygen reduction reaction (ORR) is an effective way to improve the utilization of Pt. Herein, Pt-Pd-Ni octahedra nanoparticles characterized by the ultra-small size of 4.71 nm were synthesized by a Pd seed-inducing-growth route. Initially, Pd nanocubes were synthesized under solvothermal conditions; subsequently, Pt-Ni was deposited in the Pd seed solution. The Pd seeds were oxidized into Pd2+ and combined with Pt2+ and Ni2+ in the solution and finally formed the ternary alloy small-sized octahedra. In the synthesis process of the ultra-small Pt-Pd-Ni octahedra, Pd nanocube seed played an important role. In addition, the size of the Pt-Pd-Ni octahedra could be regulated by adjusting the concentration rate of Pt-Ni. The ultra-small Pt-Pd-Ni octahedra formation by depositing Pt-Ni with a feeding ratio of 2:1 showed good ORR activity, and the high half-wave potential was 0.933 V. In addition, the Pt-Pd-Ni octahedra showed an enhanced mass activity of 0.93 A mg−1 Pt+Pd in ORR, which was 5.81 times higher than commercial Pt/C. The theoretical calculation shows that compared to Pt/C, the small-sized ternary alloy octahedra had an obvious contraction strain effect (contraction rate: 3.49%). The alloying effect affected the d-band center of the Pt negative shift. In the four-electron reaction, Pt-Pd-Ni ultra-small octahedra exhibited the lowest overpotential, resulting in the adsorption performance to become optimized. Therefore, the Pd seed-inducing-growth route provides a new idea for exploring the synthesis of small-sized nanoparticle catalysts

    Functional Interaction of E1AF and Sp1 in Glioma Invasionâ–¿

    No full text
    Transcription factor E1AF is widely known to play critical roles in tumor metastasis via directly binding to the promoters of genes involved in tumor migration and invasion. Here, we report for the first time E1AF as a novel binding partner for ubiquitously expressed Sp1 transcription factor. E1AF forms a complex with Sp1, contributes to Sp1 phosphorylation and transcriptional activity, and functions as a mediator between epidermal growth factor and Sp1 phosphorylation and activity. Sp1 functions as a carrier bringing E1AF to the promoter region, thus activating transcription of glioma-related gene for β1,4-galactosyltransferase V (GalT V; EC 2.4.1.38). Biologically, E1AF functions as a positive invasion regulator in glioma in cooperation with Sp1 partly via up-regulation of GalT V. This report describes a new mechanism of glioma invasion involving a cooperative effort between E1AF and Sp1 transcription factors

    Ranges of lab values.

    No full text
    <p>(Left) Range of lab values for Moderate/High (MH) disease activity cases vs. Range of lab values for Low/Remission (LR) disease activity cases among 1320 correctly classified notes. (Right) Range of lab values for Moderate/High (MH) disease activity cases vs. Range of lab values for Low/Remission (LR) disease activity cases among 429 misclassified notes.</p
    corecore